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Introduction
Intrusion Detection Systems (IDS) play a critical 

role in ensuring security. 

ML has emerged as a powerful tool for both, 
enabling systems to automatically classify 

network traffic as normal or malicious.

Anomaly detection has proven to be an 
effective approach for intrusion detection, 
establishing a baseline of normal system.



Introduction
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Quantum Machine Learning (QML) has the 
potential to outperform classical methods.

Quantum Support Vector Machines (QSVM), Variational 
Quantum Classifiers (VQC), and hybrid quantum-classical 

neural networks

QML can handle complex, high-dimensional 
data more efficiently, leading to faster 

training times .



QSVM
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Similarly to SVM, the kernel trick is used to map data into a higher-dimensional space after 
transforming the data into a quantum feature space.
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Pegasos-QSVC
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Inspired by the Pegasos algorithm (Primal Estimated sub-GrAdient SOlver for SVM), it 
employs a stochastic gradient descent approach to solve the primal optimization problem 
of SVMs. 

Pegasos updates model parameters using only a small subset of the data, thereby 
reducing computational costs and ensuring training complexity is independent of the 
training set size.



VQC
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It employs a parameterized quantum circuit trained with classical optimization methods 
to perform classification tasks. 
As a type of variational quantum algorithm (VQA), the VQC depends heavily on the choice of 
ansatz.
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Ansatz
Two-Local, Pauli Two-Design, Real Amplitudes, and EfficientSU2, each designed with 
distinct features and trade-offs suited to various quantum computing problems.



Introduction
ML’s reliance on quality datasets can limit its 

scalability and applicability.

GANs can generate synthetic network 
traffic to augment training datasets and 

address class imbalance issues.

A promising advancements in ML for intrusion 
detection is the application of Generative 

Adversarial Networks (GANs).



Introduction
Classical ML models suffer from limitations, 

such as managing high-dimensional spaces. 

QML leverages entanglement and 
superposition to efficiently capture 

complex patterns.

Quantum ML has the potential to overcome 
the scalability and performance limitations of 

classical ML techniques. 



Quantum GAN

A typical hybrid QGAN consists of two components:
• Quantum Generator (G): A parameterized 

quantum circuit (PQC) that generates quantum 
states representing data samples.

• Classical Discriminator (D): A classical neural 
network that evaluates the similarity between 
generated samples and real data.

Two primary configurations: full quantum and hybrid.

The generator aims to learn the underlying data distribution, while the discriminator attempts 
to distinguish between real and generated samples. The goal is to iteratively refine both 
components through adversarial training.



Quantum Noise
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The presence of noise in current quantum 
hardware remains a major challenge

While testing on real quantum machines is 
valuable for validation, it is often resource-

intensive and costly. 

Evaluations that ignore these aspects may 
falsify the true capabilities of QML models. 



Objective

• Improve performance and efficiency of Intrusion detection model using QML.

• Use Noisy quantum simulators to emulate real hardware imperfections, enabling the 
testing of QML architectures under more realistic conditions.



Dataset & Preprocessing
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• TON_IOT dataset, a next-generation 
dataset collection for Industry 4.0.

• PCA with different numbers of 
principal components.

• Min-Max scaling in range [0, 1] . 
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Methodology
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Pegasos-QSVC



Methodology
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VQC



Methodology
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Hybrid quantum-classical 
neural network



Noisy computation
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Key Performance Metrics
• T1 (Relaxation Time): Time a qubit stays excited before decaying; limited by 

environmental interactions.
• T2 (Dephasing Time): Duration a qubit remains coherent; shorter than T1 due to 

additional phase noise.
• Readout Error: Probability of measuring the wrong qubit state, even after perfect 

operations.
• Gate Errors: 
o rz: Minimal error (virtually implemented)
o sx, x: Affected by control noise
o cx (CNOT): Highest error rate, critical for entanglement



Noisy simulation
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Noisy simulators provide a more practical alternative for evaluating several 
configurations.

The selected quantum circuits were tested under noisy conditions using fake backends 
provided by IBM, which are designed to mimic the behavior of IBM Quantum systems and 
are built using system snapshots. 

These snapshots contain information about the simulated quantum device, such as the 
coupling map, which describes the physical connections between qubits, and the qubit 
properties.



Optimization and Results
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Pegasos-QSVC - Regularization parameter C

A higher C reduces penalties for misclassified points, resulting in wider margins and 
better generalization but increasing the risk of bias or underfitting. 

Conversely, a lower C forces the algorithm to fit misclassified points more closely, leading 
to narrower margins and a risk of overfitting while capturing more complex patterns.



Optimization and Results
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Pegasos-QSVC – Fine-tuning

2 to 10 qubits, 14 feature maps, and 1 to 3 repetitions for each  -> 378 experiments

The tests were  conducted initially on a noiseless simulator and subsequently on a noisy 
simulator to optimize the number of tests



Optimization and Results
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Pegasos-QSVC – Fine-tuning

• Qubit 4-7

• Reps increase stability

• ZZFeatureMap Linear, Pauli feature map, need of entanglement



Optimization and 
Results
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Pegasos-QSVC – Noisy simulation

Same qubits architecture with different error level.

FakeLagos -> good single-gate error probability 
but high two-qubit gate error and readout error.

FakeNairobi,  FakePerth -> higher gate error 
levels but lower readout error and two-qubit gate 
error.



Optimization and 
Results
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Pegasos-QSVC – Noisy simulation

One of the best configuration (PauliFeatureMap[Z, 
XX] using 2 repetitions and 6 qubits) becomes the 
worst when noise is applied.

ZFeatureMap shows good performance even in the 
presence of noise.



Optimization and 
Results
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Pegasos-QSVC – Noisy simulation

FakeLagos is more sensitive to feature maps with 
a higher number of CX gates.

It performs well when using the ZFeatureMap, 
which does not involve entanglement between 
qubits.



Optimization and Results
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VQC – Ansatz and FeatureMap

• 4 ansatzes, 1-3 reps

• ZZFeatureMap and EfficientSU2 best stability in 
performance

• PauliFeatureMap good performance but unstable



Optimization and Results

Quantum Machine Learning for Intrusion Detection on Noisy Quantum Computers – Franco Cirillo – fracirillo@unisa.it

VQC – Optimizers and best configurations

• Qubits 3-5

• COBYLA generally achieves the highest accuracies and is the most stable.

• SPSA and NFT also perform well, but are less stable

• NELDER MEAD and POWELL achieve competitive results only in specific cases.



Optimization and Results
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VQC – Noisy simulation

• The configuration 3 QUBIT, PauliFeatureMap [Y], RealAmplitudes(reps=2), SPSA 
consistently delivers the best overall results with accuracy above 91\% and F1-
Score up to 94.19\%. 

• In contrast, the configuration 5 QUBIT, PauliFeatureMap [Z, YY], EfficientSU2 
(REPS=2), SPSA shows significant performance drops, especially on Fake Lagos 
and Fake Perth.

• FakeNairobi and FakePerth perform better than FakeLagos with circuits that 
require more entanglement, such as the ZZFeatureMap, and with EfficientSU2, 
which are more complex compared to Real Amplitudes.



Optimization 
and Results
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Hybrid – Fine-tuning

• Simpler circuits 
contributes to optimizing 
the performance

• Qubit 3-5



Optimization and Results
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Hybrid – Noisy simulation

• Results are highly dependent on the backend used.

• Drop in performance with FakeLagos, due to greater sensitivity to errors in two-
qubit gates.

• FakePerth maintains a consistent level of performance.



Result Analysis
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• Pegasos-QSVC stands out for achieving better 
performance than VQC. 

• VQC delivers strong results, but their performance is 
highly sensitive to parameters, requiring systematic 
testing.

• The hybrid neural network performs well, showcasing 
the benefits of combining classical and quantum 
paradigms for robust and efficient models. 

Noiseless

Noisy



Result Analysis
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QML models are heavily influenced by the noise characteristics of the simulated quantum 
backends. 

Once the real quantum machine for training is selected, it is useful to assess the machine's 
resistance to two-qubit gate errors in order to decide the circuit structure to execute.

Machines more sensitive to these errors may require circuits with less entanglement, while 
machines less prone to errors can handle more complex circuits with greater 
entanglement.



QGAN Configuration
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Generator

Each qubit in the circuit represents a 
feature of the dataset. 

• Hadamard gates to all qubits
• Feature map 
• Ansatz 
• Rotation gates to inject noise



Interpret function
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The interpret function transforms the generator's output, which corresponds to the probability 
of observing each combination of qubit states, with a cardinality of 2n, into a lower-
dimensional representation of cardinality n. 

For each qubit i, the interpret function extracts its marginal probability by summing over all 
measurement outcomes where qubit i is in state 1. 



Interpret function
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Let P(x) represent the probability of observing a particular n-qubit state x = (x1, x2, . . . , xn), 
where xi ∈ {0, 1}. Then, the marginal probability pi for qubit i is computed as:

The resulting vector is (p1, p2, . . . , pn), each component pi lies in the range [0, 1], making it 
directly comparable to the features in the real dataset.

This dimensionality reduction simplifies the discriminator's input without sacrificing the 
ability to distinguish between real and generated data. 



Discriminator
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The discriminator is a classical feedforward neural network. 

Dense hidden layers with LeakyReLU functions, to introduce non-linearity while mitigating 
vanishing gradients. 

Evaluation metrics such as loss values, accuracy, and the F1 score monitor performance, 
while the quality of generated data is validated by comparing its statistical properties with 
real data. 

The experiments are replicable, and the source code is available on 
https://github.com/francocirill/qgan



Configurations tested
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#qubits: 3-6

Ansatz: EfficientSU2, Real Amplitude

Reps: 3-10

Discriminator Hidden Layer Size: 16-128

Learning rate: 0.001-0.01

Epochs: 80



Generator Reps Impact
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A clear trend can be observed where increasing the number of generator repetitions 
generally leads to slightly improved performance metrics, though the magnitude of 
improvement tends to decrease as the repetitions increase, stabilizing after 8-10 reps.

However, while the gains in performance are incremental, the computational time 
required to train the model increases substantially. 



Learning Rate Sensitivity
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The learning rates for both the generator and discriminator play a crucial role in 
determining the stability and convergence of the QGAN. 

While most configurations use balanced learning rates (e.g., 0.01 for both), experiments 
with significantly smaller or unbalanced learning rates (e.g., 0.001/0.005 or 0.003/0.008) 
show mixed results. 

These settings sometimes lead to minor performance drops, highlighting the importance 
of carefully tuning the learning rates.



Generator params
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EfficientSU2 demonstrates slightly better performance across most configurations, 
particularly when combined with 6 principal components.

Reducing the number of features generally leads to a slight decrease in performance, 
indicating that retaining more features provides the model with richer information to 
generate better outputs.



Loss plot

Intrusion Detection System based on Quantum Generative Adversarial Network– Franco Cirillo– fracirillo@unisa.it

The highest-performing 
configuration combines 6 PCA 
features, the EfficientSU2
ansatz, 9 generator repetitions, 
and 128 discriminator neurons. 
This setup achieves an accuracy 
of 0.937 and an F1 score of 
0.9384. 



Distribution plot
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Federated
Approach

Intrusion Detection Using Quantum Generative Adversarial Networks: A Federated Approach With Noisy Simulators– Franco Cirillo– fracirillo@unisa.it

• Generator and discriminator 
weights are aggregated separately

• Each quantum generator operates 
with a unique seed

• FedAvg



Loss plot
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The highest-performing 
configuration among 4 nodes 
combines 6 PCA features, the 
EfficientSU2 ansatz, 3 
generator repetitions, and 128
discriminator neurons. 

This setup achieves an accuracy 
of 0.9125 and an F1 score of 
0.9034. 



Noisy Simulation
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Evaluated using IBM’s FakeBackend to compare performance degradation and convergence 
time. 

This backend simulates quantum devices based on system snapshots.

Simulations were performed with the Qiskit-Aer package using the Sampler primitive. 

While noisy simulations yield different results, starting with noise-free simulations provides a 
useful baseline before assessing the impact of noise.



Loss plot
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Evaluated on the FakeNairobi backend, a 
noisy quantum simulator with seven qubits.

To address problems related to the generator 
loss, the discriminator’s learning rate was 
reduced, achieving an optimal balance 
between the two models.



Loss plot

Intrusion Detection Using Quantum Generative Adversarial Networks: A Federated Approach With Noisy Simulators– Franco Cirillo– fracirillo@unisa.it

Final model reached an accuracy of 0.8738 and an 
F1-score of 0.8797.

Importance of balancing the generator and 
discriminator’s capabilities.

The learning rate proves to be a key tunable
parameter in this regard.



Authentication
Increasing necessity for authentication 

mechanisms of quantum devices.

In Quantum Federated Learning it is 
essential for all collaborating devices within 
the learning algorithm to be authenticated

This is essential for the integration of these 
machines into larger quantum networks.



Authentication
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Leveraging quantum principles for device 
authentication presents a compelling avenue.

For instance, quantum-based authentication 
schemes can exploit the no-cloning 

theorem.

Quantum properties such as superposition, 
entanglement provide inherent advantages 

over classical methods. 



Authentication
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Traditional methods rely on cryptographic 
key management, a process that has long 

been vulnerable to various risks and 
challenges. 

One of the primary vulnerabilities lies in the 
potential exposure of cryptographic keys.



Authentication
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Stored keys are always susceptible to 
interception or theft by malicious 

actors

The distribution of keys presents logistical 
challenges, particularly in large-scale systems 

or distributed networks

Ensuring the secure transfer and storage 
of keys can be complex and error-prone.



Physical Unclonable Functions

PUFs exploit the inherent physical variations introduced by 
the manufacturing process to generate unique identifiers 
for each device.
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Physical Unclonable Functions (PUFs) have acquired attention for their ability to provide 
device authentication without relying on stored secrets. 

An example is the SRAM-PUF which exploit the SRAM cells 
imperfections for device authentication. 

PUFs are based on the Challenge-Response paradigm. 



Physical Unclonable Functions
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In a classical scenario, the process typically involves two main phases.

• Enrollment Phase involves capturing the 

inherent nanoscale imperfections within the 

circuitry. 

Challenge

Response

Challenge Response

01001110 11010010

00101011 01111101

01011001 01010101

11101010 10100010



Physical Unclonable Functions
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• Authentication Phase: the PUF is utilized 

to verify the identity of a device.

However, recent studies have revealed that some conventional PUF implementations suffer 

from security vulnerabilities, susceptibility to cloning, and vulnerability to machine learning-

based attacks, casting doubts on their reliability.

Challenge

Response

Challenge Response

01001110 11010010

00101011 01111101

01011001 01010101

11101010 10100010

Compare



Quantum Physical Unclonable Functions
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Quantum PUFs (QPUFs) exploit the inherent errors in quantum devices to generate unique 
and unpredictable responses, offering heightened security compared to classical PUFs. 

QPUFs offer distinct advantages rooted in the no-
cloning theorem, ensuring that an arbitrary quantum 
state cannot be perfectly replicated without altering 
the original state.



Quantum Physical Unclonable Functions
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Today's Quantum computers are susceptible to various types of quantum errors, which 
stem from diverse sources such as manufacturing imperfections, control errors, 
environmental interactions. 

There are several errors:

1. Gate error introduces a probability of error in logical 

operations.

2. Decoherence occurs as qubits interact with the 

environment, leading to state loss. 



Quantum Physical Unclonable Functions
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3. Readout errors may result from imperfections in 

readout circuitry, causing bit-flips. 

4. Single-qubit errors arise from errors in single-qubit 

gates, such as the Hadamard gate or rotation gates.

5. Two-qubit errors stem from errors in two qubit 

gates, like the CNOT gate. 

6. Crosstalk occurs when parallel gate operations on 

different qubits impact each other's performance. 



Quantum Physical Unclonable Functions

The rates of these errors vary among qubits and hardware, 
providing a unique signature for identification.

All these errors are inherently leveraged by QPUFs to generate 
unique responses for each device. 
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Quantum Physical Unclonable Functions
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However, QPUFs also pose significant technical challenges, 
including the need for precise control over quantum states. 

Their practical realization and integration into real-world 
applications require further exploration and 
technological advancements.



Objective
Our method aims to address the limitations of current technology in crafting an efficient 
QPUF system.

Designing an effective QPUF circuit for authentication mechanisms is 
challenging due to the complexity of managing quantum states. 

The goal is also to create a simple system that does not require 
additional hardware, such as quantum channels or quantum memory.

Challenges

Practical Evaluation of a Quantum Physical Unclonable Function and Design of an Authentication Scheme– Franco Cirillo– fracirillo@unisa.it



Objective

• Quantum circuit to function as a QPUF, evaluating instability, randomness, and 
uniqueness metrics to assess its efficacy. 

• Authentication scheme that leverages the challenge-response paradigm.
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Proposed QPUF
The proposed QPUF circuit leverages the inherent biasing of qubits towards the 1 or 0 state 
to generate the response. This biasing can arise from gate errors, including those 
associated with X-Y-Z rotation gates, or from readout errors. 
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Proposed QPUF
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Proposed QPUF

Challenges appear as arrays including all 
parameters for every individual gate within a 
single instance. 
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Each respective response constitutes the 
outcome of measuring all qubits following the 
execution of the circuit a specific number of times. 



Proposed QPUF

The resultant circuit addresses issues delineated in literature, namely the requirement 
for entangled qubits facilitated by the utilization of CZ gates, and the necessity for a 
heightened challenge space achieved through the parameterization of X-Y-Z rotation 
gates.
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Challenges and responses of the mechanisms are not of a quantum nature, implying 
that there is no requirement for a quantum communication channel, nor does the 
verifier need to possess quantum memory to store challenges and responses. 



QPUF metrics
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Instability refers to variations and unpredictability in the QPUF responses of a single 

device. If it is too high, can compromise the reliability and security of QPUF-based 

systems. 

In order to evaluate such Instability, we can compare QPUF responses by means of a 

Normalized Absolute Probabilistic Distance (NAPD) over every response pair.

rk
n,q ->

q-th combination of qubit results on Q=2nqubits

n-th challenge

k-th device



QPUF metrics
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Instability for the k-th device can be estimated as follows:

rk
n,i ->

For each challenge and for each distinct pair of executions on the same challenge, 

NAPD is computed.

Ideally, Instability in QPUFs should be minimized, indicating consistent responses over 

time.

i-th output of D executions

n-th challenge out of N

k-th device



QPUF metrics
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Randomness refers to the stochastic nature of responses, ensuring that each response 

is maximally distinct from another, even when presented with similar challenges. 

The Randomness for the k-th device can be estimated as follows:

rk
n ->

For each distinct pair of challenges, NAPD is computed.

Ideal Randomness values are ones as close to 1 as possible.

n-th challenge out of N

k-th device



QPUF metrics
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Uniqueness: denote that each generated output from every single device is distinct 

from outputs of all other devices, giving the same input. 

The Uniqueness can be estimated as follows:

rk
n ->

For each distinct pair of devices and for each challenge, NAPD is computed.

Ideal Uniqueness values are ones as close to 1 as possible.

n-th challenge out of N

k-th device out of K



Experimental results
Real quantum hardware provided by IBM, namely ibm_brisbane, ibm_kyoto, and 
ibm_osaka, has been employed, leveraging the Qiskit SDK.

Practical Evaluation of a Quantum Physical Unclonable Function and Design of an Authentication Scheme– Franco Cirillo– fracirillo@unisa.it

In general, the QPUF circuit described has been 
employed with a qubit count of 8 and a 
measurement shot count of 20,000 per circuit. 



Experimental results
Specifically, concerning Instability

testing, a set of 10 challenges (N) and 5

executions each (D) were utilized. 

It has been observed that increasing the 

number of shots or the number of 

executions leads to a decrease in 

Instability values.

Therefore, without limitations on the 

utilization of quantum computers, the 

results can certainly be improved.
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Experimental results
Concerning Randomness testing, the 

parameter N is set to 10. 
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Experimental results
Concerning Uniqueness testing, the 

parameter N is set to 10 and K is 3 for the 

three IBM devices used. 

The experiments are replicable, and the 

source code is available on 

https://github.com/francocirill/QPUF

Practical Evaluation of a Quantum Physical Unclonable Function and Design of an Authentication Scheme– Franco Cirillo– fracirillo@unisa.it

https://github.com/francocirill/QPUF


Analysis

It is essential to consider that the derived Instability values serve as an upper bound, given 
the continuous improvement observed by increasing the number of executions of the 
quantum circuit. 
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The achieved results aimed at obtaining acceptable values rather than aiming for the best 
possible outcomes, primarily due to limitations in utilizing the quantum computing service.



Analysis
Randomness and Uniqueness values are not bad, especially considering that achieving the 
ideal value of 1 poses a significant challenge.
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This is because it would require each response to have a probability of 1 for only one 
combination of qubits and 0 for all others.

Overall, the metric graphs indicate low Instability, good Randomness and a satisfactory 
Uniqueness. However, the Uniqueness of devices can be further enhanced by employing 
the authentication scheme described subsequently.



Device authentication scheme

Practical Evaluation of a Quantum Physical Unclonable Function and Design of an Authentication Scheme– Franco Cirillo– fracirillo@unisa.it

Like a classical PUF authentication method, the QPUF authentication scheme proposed 
is composed of two different operations.

An enrollment phase, where QPUF information is 
stored by the verifier, and an authentication
phase, where the prover prove his identity using 
its QPUF.



Device authentication scheme

During the enrollment phase, the 

verifier randomly generates a 

number N of challenges and 

evaluates the responses using the 

QPUF of the device in a secure 

environment, ensuring that 

information cannot be captured and 

remains safe. 

The verifier store the resulting CRPs 

in a table.
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Enrollment



Device authentication scheme

The verifier transmits m challenges, 

typically selected randomly. 

These challenges are conveyed via a 

public classical channel to the 

prover, which elicits the responses to 

the received challenges exploiting 

the QPUF mechanism and send 

them to the Verifier.
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Authentication



Device authentication scheme

Finally, the verifier checks whether 

all the received responses are similar 

to those stored in the local database. 

Upon affirmation, the prover is 

authenticated; otherwise, no 

information regarding the similarity of 

the responses is disclosed, and the 

process halts.
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Authentication



Device authentication scheme

Two responses are considered similar if their NAPD does not exceed a certain threshold 

parameter, λ, that can be determined through instability analysis. 

In our case, based on experimental results, λ is set to 0.07, corresponding to 7%. 

This implies that two responses are considered similar only if their distance does not exceed 

7%, as this was the maximum instability observed between pairs of responses for the same 

challenge and device. 

Practical Evaluation of a Quantum Physical Unclonable Function and Design of an Authentication Scheme– Franco Cirillo– fracirillo@unisa.it

Similarity



Authentication scheme analysis
It is essential to recall that the parameter λ can be further lowered by conducting a more 

detailed instability analysis, thus performing multiple shots of circuit executions.

The security of the scheme can be enhanced by increasing the number of challenges 

required for the authentication, as only a response indicating whether the authentication 

was successful or not is returned. 

Therefore, no information about the correctness of each individual response is provided; an 

attacker would need to guess all the responses to find out whether they are all correct. 
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